平成 23 年度 シラバス	学年・期間・区分	1年次・前期・選択
平成 23 年度 シブバス	対象学科・専攻	機械・電子システム,電気情報システム,土木工学専攻
電気電子工学特別演習 I	担当教員	今村成明(Imamura, Nariaki)
(Advanced Exercises I in Electrical	教員室	電気電子工学科棟2階 (Tel. 42-9022)
and Electronic Engineering)	E-Mail	n-imamu ※@kagoshima-ct.ac.jpをつけて下さい.
教育形態 / 単位数	演習 / 1単位	
週あたりの学習時間と回数	〔授業(100分)+	自学自習(50分)〕×15回

〔本科目の目標〕

電気回路学,電磁気学の基礎的事項を基に,種々の応用問題を解くことにより更に理解を深め、大学で取り扱われる電気回路学,電磁気学の問題を十分に解けるレベルまで応用力を高めていく.

[本科目の位置付け]

電気電子工学科卒および情報工学科卒の学生が対象である.本校専攻科入学時までに履修した電気回路,電磁気学に関する知識を総結集し,復習あるいは新たな学習により,電気回路,電磁気学の基本事項を確実に把握し,応用問題を解くことのできる実力を身につける.

[学習上の留意点]

講義内容をよく理解するために、毎回、事前に渡された演習問題(宿題)は解いておき、授業時間での質問等に対応できるようにしておくこと、また、講義終了後は、復習として演習問題等の課題に取組むこと、疑問点があれば、その都度質問すること.

「授業の内容

〔授業の内容〕							
授 業 項 目	時限数	授業項目に対する達成目標	予習の内容				
【電気回路演習】 1. 直流回路, 対称回路	2	網目法,枝電流法,重ねの理,テブナンの定理, ノートンの定理を理解し,各種回路の回路電圧, 回路電流,電力の計算ができる. ブリッジ回路の平衡条件を理解し,未知の抵抗値 などを計算できる.	左の項目について,過年 度使用した教科書で勉強し,演習問題を解いて おく.				
2. 交流回路	4	正弦波交流,ベクトル記号法,インピーダンスとアドミタンス,交流電力,電力のベクトル表示,直列共振,並列共振,多相交流,多相交流の電力を理解し、各種回路の計算ができる.	度使用した教科書で勉				
3. 過渡現象	4	過渡現象,時定数の意味,ラプラス変換を理解し,各種回路の過渡現象における一般解を算出できる.					
【電磁気学演習】 4. 真空中の静電界, 導体系	6	クーロンの法則,電界と電位,ガウスの法則,電 気双極子,静電容量,静電エネルギーと静電気力 の概念を理解し,各種条件における計算ができる.	度使用した教科書で勉				
5. 誘電体中の静電界	4	誘電分極, 誘電体中の電界について理解し, 計算ができる. 誘電体界面での電界 E と電東密度 D の境界条件を理解し,各種条件における計算ができる. 誘電体に蓄えられるエネルギー,誘電体境界面に働く力について計算ができる.	度使用した教科書で勉				
6. 定常電流と磁界、磁性体	4	ビオ・サバールの法則、アンペアの法則の概念を理解し、計算ができる。 磁位、ベクトルポテンシャルの概念を用いて計算ができる。 磁界中の電流に働く力、磁性体中の磁界の強さについて計算ができる。 磁性体界面での磁界の強さ H と磁束密度 B の境界 条件を理解し、各種条件における計算ができる。 各種磁気回路の計算ができる。	度使用した教科書で勉				

授	業	項		時限数	授業項目に対する達成目標	予習の内容
7. 電磁誘	導			4	レンツの法則、ファラデーの電磁誘導の法則の概念を理解し、計算ができる. 変圧器起電力と速度起電力の概念を理解し、計算ができる. インダクタンス、磁界のエネルギーについての計算ができる.	度使用した教科書で勉
	- 定期	試験 -		2	授業項目 1~7 に対して達成度を確認する.	
試験	答案の	返却•	解説		試験において間違った部分を理解出来る.	
〔教科書〕						
			授業時配布		1 (400/)	
			期試験(60% 育目標との		ト(40%) - 授業態度(上限 20%)	
	ュグラム	ムの学	習・教育目			
メモ欄						