平成21年度 シラバス	学年・期間・区分	4年次・通年・A群
	対象学科・専攻	電子制御学科
工学実験 (Experiments of Control Engineering)	担当教員	室屋(tel 42-9087),吉満(tel 42-9089),
		島名(tel 42-9083),岸田(tel 42-9084)
	教員室	室屋(制3F),吉満(一般2F),
		島名(電1F),岸田(専4F)
	E-Mail	muroya , yosimitu , shimana , kishida
		teachername@kagoshima-ct.ac.jp
教育形態 / 単位の種別 / 単位数	実験 / 履修単位 /	3単位
週当たりの学習時間と回数	授業(150分)×30回	

〔本科目の目標〕

電子制御工学に関する各種の実験を行い,基礎知識をより深く理解するとともに実験の方法,データ処理,報告書の書き方について学習し,的確な把握力と思考力,および解析能力などを養う.また、実験項目に相当する科目の基礎基本のAを到達目標とする。

〔本科目の位置付け〕

1年次から4年次までの機械工作法,工作実習,情報処理,電子工学,エネルギー工学,電子回路,制御工学,数値制御,電子計算機の知識を必要とする.

[学習上の留意点]

- (1)実験書, ノート, ポケコンは毎回準備しておくこと.
- (2)服装は実習服および靴を正しく着用し,開始時間を厳守すること.
- (3)実験は決められた順序,方法で細心の注意を持って行い,特に災害を招かないよう注意する.
- (4)実験はグループごとに行い,任務を分担して協力しあうこと
- (5)実験後は報告書を作成し,指定される場所に指定の期限までに提出すること.

〔授業の内容〕

授 業 項 目	時限数	授 業 項 目 に 対 す る 達 成 目 標
0 . オリエンテーション	3	実験のスケジュール,注意点,報告書の書さ方について理解できる
1 . FET 静特性測定	3	FET の静特性,動作原理及び用途について理解できる
2 . 1 次遅れ , 2 次遅れ系の周波数特性	3	遅れ系の周波数特性,ボード線図の描き方について理解できる
の測定		
3 . 直流サーボモータの特性測定	3	直流モータの原理,電圧・速度・電流特性、誘起電圧について理解できる
4 . 論理回路	3	ゲート IC 使用法、組合せ回路論理回路の構成について理解できる
5 . 電力変換回路	3	チョッパ制御、平均電圧制御について理解できる
6.マイクロコンピュータ	3	アセンブリ言語によるプログラミングについて理解できる
7.マイクロコンピュータ	3	パラレルインターフェースによる外部機器の制御について
8.パルスモータによる制御	3	(1)パルスモータの動作原理が理解できる(2)駆動回路について理解できる
	3	(3)コントローラの動作原理が理解できる
9.位置決め制御	3	オープンループ方式による位置決め制御のプログラムを作成できる.
10.輪郭制御	6	DDA 方式による直線補間と円弧補間するプログラムを作成できる.
11 . プログラマブル・コントローラによ	6	(1)プログラマブル・コントローラ(PLC)の特徴と動作原理が理解できる.
る制御		
12 .リレーシーケンス制御回路の設計	3	マイクロスイッチの動作原理と特性,用途を理解し,回路組立ができる。
13 .リレーシーケンス制御回路の設計	3	タイマーの動作原理と特性,用途を理解し,回路組立ができる。
14 . 光電式・超音波式センサの特性実験	3	光や超音波を用いたセンサの動作原理と検出範囲を理解する。
15.サイリスタ(SCR)の静特性測定	3	
16 . OP アンプによる作動増幅回路	3	• • • • • • • • • • • • • • • • • • • •
17 . 0P アンプによる演算回路	3	
18 .光センサとトランジスタを用いた電	3	光センサ,トランジスタの増幅作用を理解し,回路組立ができる。
子回路の設計		
┃19.トランジスタの h パラメータ測定 ┃	3	トランジスタの交流 h パラメータの測定方法および特性について理解できる
20.トランジスタのバイアス測定	3	
21.切削動力計の校正	3	ひずみゲージ式動力計の原理と校正について理解できる
22.切削力の測定	3	切削条件の違いによる切削抵抗の変化について理解できる
23.2次元切削における切削機構の検討	3	2 次元切削モデルにおける切削力の理論的解析について理解できる
24 .ディーゼルエンジンの分解・組立(1)	3	ディーゼルエンジンの基本的構造および分解・組立方法について理解できる
ディーゼルエンジンの分解・組立(2)	3	ディーゼルエンジンの諸元および作動について理解できる
25. 電子制御工学実験のまとめ	3	全般的な実験や報告書の取り組みについて理解する
11. プログラマブル・コントローラによる制御 12. リレーシーケンス制御回路の設計 13. リレーシーケンス制御回路の設計 14. 光電式・超音波式センサの特性実験 15. サイリスタ(SCR)の静特性測定 16. OP アンプによる作動増幅回路 17. OP アンプによる演算回路 18. 光センサとトランジスタを用いた電子回路の設計 19. トランジスタのトパラメータ測定 20. トランジスタのバイアス測定 21. 切削動力計の校正 22. 切削力の測定 23. 2次元切削における切削機構の検討 24. ディーゼルエンジンの分解・組立(1) ディーゼルエンジンの分解・組立(2)	6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	DDA 方式による直線補間と円弧補間するプログラムを作成できる. (1)プログラマブル・コントローラ(PLC)の特徴と動作原理が理解できる. (2)PLC を用いたシーケンス制御について理解できる. マイクロスイッチの動作原理と特性,用途を理解し,回路組立ができる。タイマーの動作原理と特性,用途を理解し,回路組立ができる。光や超音波を用いたセンサの動作原理と検出範囲を理解する。 SCR のブレークオーバ電圧,保持電流を理解し,回路組立ができる。 OP アンプの基本動作,差動増幅の動作を理解し,回路組立ができる。 OP アンプの加算,減算回路を理解し,回路組立ができる。 のアンプの加算,減算回路を理解し,回路組立ができる。 光センサ,トランジスタの増幅作用を理解し,回路組立ができる。 光センサ,トランジスタの増幅作用を理解し,回路組立ができる。 がみゲージ式動力計の原理と校正について理解できる ひずみゲージ式動力計の原理と校正について理解できる 切削条件の違いによる切削抵抗の変化について理解できる 切削条件の違いによる切削がの変化について理解できる ブィーゼルエンジンの基本的構造および分解・組立方法について理解でき ディーゼルエンジンの諸元および作動について理解できる ディーゼルエンジンの諸元および作動について理解できる

[教科書]電子制御工学実験書(第4・5学年)

〔参考書・補助教材〕

〔成績評価の基準〕受講態度(50%)+実験報告書(50%)

[本科(準学士課程)の学習教育目標との関連]1-b,3-c,4-a

〔教育プログラムの学習・教育目標との関連〕3-3

〔JABEEとの関連〕(d)(2)b)