平成 24 年度 シラバス	学年・期間・区分	1年次 ・ 前期 ・ 選択	
	対象学科・専攻	電気情報システム工学専攻	
画像処理基礎 (Fundamentals of Image Processing)	担当教員	加治佐 清光(Kajisa, Kiyomitsu)	
	教員室	専攻科棟 3 階(TEL: 42-9130)	
	E-Mail	kajisa@kagoshima-ct.ac.jp	
教育形態/単位の種別/単位数	講義 / / 2単位		
週あたりの学習時間と回数	〔授業(100分)+自学自習(200分)〕×15回		

[本科目の目標] 静止画像処理の基礎事項について習得する。

[本科目の位置付け] 電気工学科卒および情報工学科卒の学生が対象であるため、基礎事項の修得に重点を置く。2年後期の「マルチメディア工学」の基礎となる科目である。

〔学習上の留意点〕 授業中は画像処理アルゴリズム等の理解に努めること。講義の内容をよく理解するために、毎回、予習や演習問題等の課題を含む復習として、200分以上の自学自習が必要である。定期試験は教科書持込可(書込み可、差込み不可)で行う。

[授業の内容]

授業項目	時限数	授業項目に対する達成目標	予習の内容
1文 未 均 日	时収数	1文未頃日に刈りる建成日保	小百0万円分
1. 画像情報処理の基礎	4	□ 画像情報処理について、ディジタル画像について、データ量、1次元データへの変換について理解できる。	各授業内容について、教科書 を読んで概要を把握しておくこ と。
2. 画像の空間フィルタリング	2	□ 平滑化フィルタ、微分フィルタ、特徴抽出フィルタについて理解できる。	
3. 画像の直交変換とフィルタ リング	2	□ フーリエ変換、離散的コサイン変換、その他の直交変換、フィルタリング操作について理解できる。	
4. 画像の表示	2	□ 階調画像の表示、画像の縮小表示、画像の拡大表示、 画像の擬似表現について理解できる。	
5. ファクシミリ信号処理	4	□ ファクシミリについて、ファクシミリ信号の符号化、ランレングス符号化、2次元ランレングス符号化、Elias 符号、算術符号について理解できる。	
6. 画像の可逆符号化法	4	□ 画像のデータ圧縮符号化について、可逆画像符号化、 前処理、mod 処理、ビットプレーン符号化、濃度データ 利用方式について理解できる。	
7. 画像の非可逆符号化法	4	□ 非可逆符号化、符号化の評価方法、予測方式、直交変換方式、新しい符号化方法について理解できる。	
8. 画像の解析	3	□ 画像の解析について、線図形の解析・表現、線成分の抽出・追跡、ラスタベクタ変換について理解できる。	
9. 階調画像の解析処理	3	□ 濃度ヒストグラム解析、テクスチャ解析、ピラミッド画像 解析、ピラミッドデータの応用について理解できる。	
定期試験	2	授業項目 1~9 に対して達成度を確認する。	
試験答案の返却・解説		試験において間違った部分を理解できる。	

[教科書] 画像情報処理 安居院猛・中嶋正之 森北出版

〔参考書・補助教材〕 授業時配布プリント(練習問題)

〔成績評価の基準〕 定期試験成績(100%)-授業態度(上限 20%)

〔専攻科課程の学習・教育目標との関連〕 3-3

〔教育プログラムの学習・教育目標との関連〕 3-3

[JABEE との関連] (d)(2)a)

Memo