平成 2 2 年度 シラバス	学年・期間・区分	3年次・前期・必修
	対象学科・専攻	電気電子工学科
電気電子工学実験 (Experiments in Electrical and Electronic Engineering II)	担当教員	楠原 良人(Kusuhara, Yoshito) (1) 中村 格 (Nakamura, Itaru) (2) 樫根 健史(Kashine, Kenji) (3) 永井 翠(Nagai, Midori) (4)
	教員室	(1)電気電子工学科棟3階(Tel. 42-9072) (2)電気電子工学科棟1階(Tel. 42-9076) (3)一般科目棟 3階(Tel. 42-9075) (4) 電気電子工学科棟3階(Tel. 42-*****)
	E-Mail	(1) y-kusuha@kagoshima-ct.ac.jp(2) i_naka@kagoshima-ct.ac.jp(3) kashine@kagoshima-ct.ac.jp(4) ******@kagoshima-ct.ac.jp
教育形態 / 単位の種別 / 単位数	実験 / 履修単位 / 2単位	
週あたりの学習時間と回数	授業(200 分) × 15 回	

〔本科目の目標〕

電気工学のあらゆる分野の基礎である,電気基礎,電子基礎,電気回路,電気計測などの講義で学ぶ事柄について理解を深めるとともに,基本的な実験技術を修練し,基礎理論を実験的に立証する研究的な態度を養う.

〔本科目の位置付け〕

電気基礎,電子基礎,電気回路,電子計測で身につける知識を,本科目において実践し.現実的に把握する。すなわち,両者を常にリンクさせる.

[学習上の留意点]

実験と座学とは独立したものではない.常に,両者をリンクさせる事.(a)前もって内容を調べておく事は,実験においても然りである.(b)パーティ内において一人一人に役割を分担し,協同作業を行う事.この事により,協調精神と責任感を重んずる習慣が養われる.(c)実験中は気を引き締めて作業を進め,安全をはかる事.(d)提出期限は厳守する事.

「授業の内容)

1 授業の内容」			
授 業 項 目	時限数	授 業 項 目 に 対 す る 達 成 目 標	
1. 実験の総説	4	・実験全般における概説や注意事項,機器の取り扱い方,レポートの書き方な	
		どを理解できる.	
2. 太陽電池・燃料電池の特性試験	4	・太陽電池の I-V 特性を理解できる.	
		燃料電池のⅠ-Ⅴ特性を理解できる.	
3. 交流電力の測定	4	・単相電力計法,三電流計法,三電圧計法による単相電力の測定および,二電	
		力計法,三相電力計法による三相電力の測定を行うことができる.	
4. アナログ・デジタルオシロスコー	4	・アナログオシロスコープの動作原理と取り扱いができる.	
プの原理と取り扱い		デジタルオシロスコープの動作原理と取り扱いができる.	
	4	・磁束計による環状鉄心のヒステリシスループの測定を行うことができ,残留	
5. 磁束密度・ヒステリシスループの		磁束密度,保持力を理解できる.	
測定	4	・エプスタイン装置による鉄損の測定を行うことができる.	
6. 鉄損の測定	4	・交流ブリッジによるインダクタンス,静電容量の測定を行うことができる.	
7. L , C の測定	4	・RL,RC フィルタの周波数特性を測定できる.	
8. フィルタの周波数特性	4	・PN 接合 , ダイオードの動作原理と整流作用 , 最大定格・降伏電圧について理	
9. ダイオードの特性測定		解できる . Si と Ge ダイオードの順方向と逆方向特性を理解できる . LED の順	
		方向特性から,動作点を決定し,負荷線を描画することができる.負荷線の	
		傾きから抵抗値を計算できる .	
	4	・回路のパターン設計,基板の作製法について理解し,習得できる.	
10. ワイヤレスマイクの基板製作	4	・ハンダ付けの方法を理解し,各素子を基板へ実装することができる.コイル	
11. ワイヤレスマイクの組立・試験		とコンデンサによる周波数選択の原理を理解し,受信周波数を調整すること	
		ができる.	
	16	・データ解析 , 検討・考察の仕方 , 文献調査などを理解し , 実験レポートを作成	
12. レポート作成指導		することができる.	

〔教科書〕担当者が作成した実験指導書

[参考書・補助教材]電気計測,電気回路,電子工学,半導体素子,電子回路という標題の著書であれば参考になる.

〔成績評価の基準〕提出された各テーマのレポートの内容,実験態度等を,別に定めた評価基準に基づいてそれぞれ 100 点満点で評価し(実験態度はそのうち 20 点),全テーマの評価点を平均して評価とする.実験に出席はしたがレポートを提出しない場合は,そのテーマの評価点は最高 20 点となり,実験を欠席した場合は 0 点とする.レポートの提出数が年間のテーマ数の 8割に満たない場合は未修得とする.

〔本科(準学士課程)の学習教育目標との関連〕 1-b, 3-c, 4-a

[教育プログラムの学習・教育目標との関連]

[JABEE との関連]