平成21年度 シラバス	学年・期間・区分	2年次・通年・A群	
	対象学科・専攻	電子制御学科	
電気回路 (Electric Circuits)	担当教員	鎌田 清孝 (Kamata , Kiyotaka)	
	教員室	電気電子工学科棟 1 階 (Tel. 42-9080)	
	E-Mail	kamata@kagoshima-ct.ac.jp	
教育形態 / 単位の種別 / 単位数	講義・演習 / 履修単位 / 2単位		
週当たりの学習時間と回数	授業 (100分) × 30回		

[本科目の目標]

電気系科目の基礎として回路理論の基礎を習得し、様々な回路網の問題解決能力を養うことを目的とする。

〔本科目の位置付け〕

電子制御工学科の電気電子科目(電磁気学I,電磁気学 ,電気回路 ,電子回路,ディジタル回路)の基礎となる.

[学習上の留意点]

電気回路をよりよく理解し、習得するためには、できるだけ多くの演習問題を解くことである。そのため、章末ごとにある演習問題を解きレポートとして提出すること。さらに、参考書や補助教材は図書館に数多くあるので、積極的に利用すること。また、授業の演習の際、計算機を必要とするため、関数電卓は必ず持参すること。

〔授業の内容〕

(12****)117		
授 業 項 目	時限数	授 業 項 目 に 対 す る 達 成 目 標
1.正弦波交流	4	交流の波高値 , 平均値 , 実効値 , 位相を理解し , 計算できる .
2 . 正弦波交流のフェーザ表示と複	6	正弦波交流のフェーザ表示,複素数表示を理解し計算でき,フェーザ図が書け
素数表示		రే .
3.交流における回路要素の性質と	6	交流における回路要素の性質(抵抗,インダクタンス,キャパシタンス)を理
基本関係		解し,計算できる.
前期中間試験		授業項目1~3について達成度を確認する.
4.回路要素の直列接続	4	直列接続のインピーダンス,アドミタンスのフェーザ表示と極表示を理解し,
		計算できる.
5 . 回路要素の並列要素	4	並列接続の並列接続のインピーダンスとアドミタンスのフェーザ表示と極表示
		を理解し,計算できる.また,インピーダンスとアドミタンスとの関係を理解
		し計算できる.
6 . 2 端子回路の直列接続	2	2 端子回路の直列接続のインピーダンスを理解し,計算できる.
7 . 2 端子回路の並列接続	2	2 端子回路の並列接続のアドミタンスを理解し,計算できる.
前期期末試験		授業項目1~7について達成度を確認する.
8.交流の電力	6	交流の瞬時電力を理解し,計算できる.
		電力の平均値と力率 , 無効電力と皮相電力 , 力率の改善を理解し , 計算できる .
9 . 交流回路網の解析	6	キルヒホッフ則,網目電流法を理解し,計算できる.
10.交流回路網の諸定理	6	重ね合わせの理,鳳・テブナンの定理を理解し,計算できる.
後期中間試験		授業項目 1~10 について達成度を確認する.
11.交流回路の周波数特性	2	回路要素の周波数特性を理解できる.
12. 直列共振	5	直列共振回路,共振曲線,回路のQ値と共振曲線の鋭さ,直列共振での電圧と
		電流を理解し、計算できる・
13. 対称三相交流	7	対称 3 相交流,電圧,電流,インピーダンスの Y - 変換,電力を理解し,計
		算できる.
後期期末試験		授業項目 1~13 について達成度を確認する.
		······································
試験答案の返却・解説		各試験において間違った部分を理解出来る .

〔教科書〕電気回路の基礎 西巻正郎 他 森北出版

[参考書·補助教材]電気回路計算法 本田徳正 他 日本理工学出版

[成績評価の基準]中間試験および期末試験成績(70%) + 小テスト(10%) + レポート(20%) - 授業態度

[本科(準学士課程)の学習教育目標との関連]3-c

〔教育プログラムの学習・教育目標との関連〕

[JABEEとの関連]