平成 21 年度 シラバス	学年・期間・区分	1年次・後期・選択	
	対象学科・専攻	電気情報システム工学専攻	
応用電子物性	担当教員	濱川 恭央 (Hamakawa, Yasuo)	
(Applied Physics of	教員室	情報工学科棟 5 階(Tel. 42-9091)	
Semiconductor Devices)	E-Mail	hamakawa@kagoshima-ct.ac.jp	
教育形態 / 単位数	講義 / 2単位		
週あたりの学習時間と回数	〔授業(100分)+自学自習(200分)〕×15回		

〔本科目の目標〕

固体物理の基本的な理解を通して,エレクトロニクス・情報関連デバイスの動作原理を把握する.エネルギーバンド構造の基本を理解し,基本的半導体デバイスの特性を定量的に解析する力を習得し,素子特性に関する基礎知識を修得する.それにより,デバイス応用に関する問題解決能力を養う.

[本科目の位置付け]

本科で修得した半導体物性・電子物性の理解を更に深め,電子物性についての基礎的な知識とそれらの統一的な理解により,電子計算機をはじめとする情報演算処理機器・技術の急速な発展に対応できる能力を獲得する.

〔学習上の留意点〕

初等的な量子力学と,電磁気学の知見を駆使し,結晶中の電子の挙動について,やや複雑な数式の展開を行うので,自分で,式を追いながら,数式及び現象の物理的解釈を深めることが必要である.講義内容の理解を深めるため,毎回,予習及び演習問題・復習として, 200 分以上の自学自習が必要である.各自範囲を担当し,解説・検討を行う.疑問があれば,その都度質問等で解決していくこと.

「授業の内容)

【投業の内容】				
授 業 項 目	時限数	授 業 項 目 に 対 す る 達 成 目 標		
1.電子物性の基礎	10	光電効果、コンプトン効果、ド・ブロイ波について理解し、物質の粒子性と波動性について説明できる.		
2 . 量子力学の基礎	8	シュレーディンガーの波動方程式、波動関数、量子数、フェルミ・ディラック分布関数について理解できる。		
3.固体内電子	6	結晶構造、電気伝導、エネルギーバンド、エネルギーギャップ、状態密度、 超伝導およびその理論について理解し説明できる.		
4 . 半導体物性	4	半導体のバンド構造、キャリア濃度、有効質量について理解し説明できる.		
後期期末試験	2	授業項目1~4 に関して達成度を確認する.		
試験答案の返却・解説		試験において間違った部分を理解できる.		
┃〔教科書〕 電子デバイス物性 宇佐美 晶著 日本理工出版会 ┃				

〔教科書〕電子デバイス物性宇佐美 晶著日本理工出版会〔参考書・補助教材〕電子物性松澤剛雄・高橋清・斉藤幸喜 共著森北出版

[成績評価の基準] レポート(80%) + 発表・質疑応答(20%) 授業態度(上限20%)

[専攻科課程の学習教育目標との関連]3-1

〔教育プログラムの学習・教育目標との関連〕3-1

〔JABEEとの関連〕 (d)(1)