電気電子工学実験 Ⅱ の基礎・基本

1. 細目数

	分類	Α	В	С	細目数計
3 学年 (2 単位)	電気回路・電磁気・電子工学に関 する基礎項目	1 5	1		16
	簡単な回路、装置の設計・製作と 検証	2	1		3
細 目 数 計		17	2		1 9

2. 分類とそれらの内容

				1/1
分 類	項目	細目	理解すべき内容	区分
電気回路・電磁	実験の総説	実験全般の説明	実験全般における概説や注意事項、機器の取り扱い方、	Α
気・電子工学に関			レポートの書き方などを理解できる。	
する基礎項目	ベクトル軌跡	LR直列回路	電源電圧一定のときの、LR直列回路における V_R+V_r	Α
			のベクトル軌跡を理解できる。	A
		CR直列回路	電源電圧一定のときの、CR直列回路におけるVRのベ	^
			クトル軌跡を理解できる。	Α
	交流電力の測	単相電力	単相電力計法、三電流計法、三電圧計法による単相電	
	定		力の測定を行う事ができる。	Α
		三相電力	二電力計法、三相電力計法による三相電力の測定を行	
			う事ができる。	Α
	可聴周波数の	キャンベルの周	キャンベルの周波数ブリッジによる可聴周波数の測定	
	測定	波数ブリッジ	を行う事ができる。	Α
		黒川一帆足ブリッ	黒川ー帆足ブリッジ(直線周波数ブリッジ)による可聴	
		ジ	周波数の測定を行う事ができる。	Α
	磁束密度・ヒス	磁束計	磁束計による環状鉄心のヒステリシスループの測定を	
	テリシスルー		行う事ができ、残留磁束密度、保持力を理解できる。	Α
	プの測定			
	鉄損の測定	エプスタイン装置	エプスタイン装置による鉄損の測定を行う事ができ	_
			る。	Α
	L、Cの測定	交流ブリッジ(1)	- 交流ブリッジによるインダクタンスの測定を行う事が	
	_, _,		できる	Α
		交流ブリッジ②	交流ブリッジによる静電容量の測定を行う事ができ	
		_	る。	Α
	フィルタの周	RL、RCフィルタ	RL、RCフィルタの周波数特性の測定を行う事ができ	_
	波数特性		る。	Α
	ダイオードの	ダイオード	PN 接合、ダイオードの動作原理と整流作用、ダイオー	Α
	特性測定		ドの種類を理解できる。	
		ダイオードの特	接合型ダイオード(Ge、Si)の順方向特性と逆方向特性	Α
		性測定	の測定を行う事ができる。	
		最大定格 • 降伏電	素子の最大定格電圧・電流、電子なだれ、ツェナー効	В
		圧	果を理解できる。	
		LED の点灯実験回	LED の順方向特性、負荷線の引き方、負荷線の意味を	Α
		路	理解できる。	
簡単な回路、装置	ワイヤレスマイ	基板製作	回路パターン設計、レジスト皮膜の形成、エッチング、	Α
の設計・製作と検	クの製作		仕上げの各工程の意味と作業方法を理解でき、作業す	
証			る事できる。センターポンチ、ボール盤等の工具、エ	
			ッチング液の取扱法を理解でき、扱う事ができる。	
	ワイヤレスマイ	組立・試験	ハンダ付けを行う事ができる。コイルとコンデンサに	Α
	クの組立・試験		よる周波数選択と調整を行う事ができる。	
		変調方式	変調方式の種類、FM ワイヤレスマイクの動作	В
			原理を理解できる。	

電気電子工学実験Ⅲ の基礎・基本

1. 細目数

	分 類	Α	В	O	細目数計
	測定器の取扱	2	0	0	2
3学年	各種半導体素子の特性	14	2	0	16
(2 単位)	機能回路	9	2	0	11
	マイクロコンピュータ	8	0	0	8
細 目 数 計		33	4	0	37

2. 分類とそれらの内容

				1/2
分 類	項目	細 目	理解すべき内容	区分
測定器の取扱	オシロスコープ	取扱法	・オシロスコープの原理、各端子、各つまみの意	A
	の取扱法		味とその調整法.	
		周波数•位相測定	・周波数測定法, 位相測定方法とオシロスコープ	A
			の調整.	
			・リサージュ図形の意味。	
各種半導体素	接合形トランジ	トランジスタ	・PNP 接合,NPN 接合,トランジスタの動作原	A
子の特性	スタの静特性測		理.	
	定	エミッタ共通回路	・バイアスの印加方法と動作原理、エミッタ共通	A
			回路の静特性.	
			・電流増幅度(h_{FE})の計算方法.	
	電界効果トラン	FET	・FET(電界効果トランジスタ)の構造,動作原	A
	ジスタの静特性		理とその種類.	
	測	JFET の静特性測定	・JFET の V_{DS} - I_{D} 特性、 V_{GS} - I_{D} 特性とピンチオフ	A
			電圧,相互コンダクタンス.	
		MOSFET の静特性測定	・MOSFET の V _{DS} -I _D 特性, V _{GS} -I _D 特性.	A
	サーミスタとバ	非線形素子	サーミスタ、バリスタの種類とその特性。	A
	リスタの特性測	サーミスタの特性測定	・各種サーミスタの温度-抵抗特性, 抵抗の温	A
	定		度依存性の式の係数と抵抗温度係数の導出.	
		バリスタの特性測定	・各種バリスタの電圧-電流特性.	A
		応用回路	・サーミスタとバリスタの応用回路	В
	光電素子の静特	光導電素子	・光導電素子の種類とその構造, 動作原理.	A
	性測定	CdS セルの特性測定	・CdS の照度ー光抵抗特性,電圧ー光電流特性.	A
		フォトトランジスタの	・フォトトランジスタの電圧-電流特性と指向特	A
		特性測定	性.	
		光導電素子の応用	・ 光起電効果とその応用.	В
	デジタル IC の測	IC(集積回路)	・デジタル IC とアナログ IC の入出力特性の相	Α
	定		違.	
		デジタル IC	・基本ゲートの種類、入出力特性とファンアウト.	A
		NAND ゲートの特性測	・NAND ゲートの出力電圧-入力電流特性,電	A
		定	流の出力電圧-出力電流特性.	
			・ソース電流とシンク電流	

		1		2/2
分 類	項目	細目	理解すべき内容	区分
機能回路	クリッパ・スライ	波形成形回路	・クリッパ、スライサー回路の回路構成と動作原	A
	サ回路の測定		理.	
		クリッパ, スライサ一回	・各種クリッパ、スライサー回路の出力波形と動	A
		路の測定	作.	
	微分回路•積分回	CR 微分回路	・CR 微分回路の回路構成,動作原理と特性.	A
	路の特性測定	CR 微分回路の測定	・パルス幅/時定数と CR 微分回路の動作状態と	A
			の関係.	
		RL 微分回路	・RL 微分回路の回路構成と動作原理.	В
		CR 積分回路	・CR 積分回路の構成,動作原理と特性.	A
		CR 積分回路の測定	・パルス幅/時定数と CR 積分回路の動作状態.	A
	トランジスタ増	固定バイアス回路	・固定バイアス回路の回路構成,動作原理.	A
	幅回路の設計・製	固定バイアス回路の回	・負荷抵抗 $R_{\rm C}$ 、ベースバイアス抵抗 $R_{ m B}$ の決定方	A
	作・測定	路設計	法.	
			・負荷曲線, $V_{ m CE}$ ー $I_{ m C}$ 特性と動作点との関係.	
			・カップリングコンデンサの役割.	
		回路の組立・測定	・動作点と出力電圧波形の関係, 直流電流増幅率.	A
		回路の安定性	・固定バイアス回路の温度に対する安定性.	В
マイクロコン	プログラミング	8bit マイコンの構造	・マイクロコンピュータの構造.	A
ピュータ	実験		・16bit メモリアドレス空間,CPU内部レジスタ	
			構成.	
		アセンブリ言語と機械	・2 進数と 16 進数. アセンブリ言語と機械語の	A
		語	対応.	
		プログラムの入力と実	・機械語プログラムの入力と動作解析.	A
		行		
		演算実験	・算術演算(和,差)と論理演算の実行および検	A
			証.	
		メモリクリア	・メモリレジスタへの間接アドレッシング	A
	I/O 機能応用実験	PPI	・パラレル入出力(PPI)による LED の点灯.	A
		AD 変換,DA 変換	・AD 変換器による電圧測定と直線性の測定.	Α
			・DA 変換器による電圧出力と直線性の測定.	
		DA 変換の応用	・DA 変換器によるのこぎり波,三角波の出力.	A

<u>物理学基礎 I</u>の基礎・基本

1. 項目数

	分 類	Α	В	С	細目数計
3年生(1単位)	基礎事項	6	2	0	8
	運動の数学的表現	6	0	0	6
	力と運動	7	4	0	1 1
	エネルギー	5	3	1	9
項目数計		2 4	9	1	3 4

2. 分類とそれらの内容

分類	項目	細目	理解すべき内容	区分
基礎事項	数学的基礎の復	三角関数①	角度をラジアンで表せる	Α
	習	三角関数②	三角関数の定義が説明できる	Α
		微分	初等関数の微分ができる	Α
		積分	微分の逆操作としての積分ができる	В
		ベクトル①	ベクトルの特徴が説明できる	Α
		ベクトル②	ベクトルの成分、大きさが計算できる	Α
		ベクトル③	ベクトルの内積が計算できる	Α
		ベクトル④	ベクトルの外積が計算できる	В
運動の数学	速度と加速度	速度①	位置の微分から速度が計算できる	Α
的表現		加速度	速度の微分から加速度が計算できる	Α
		速度②	加速度の積分から速度が計算できる	Α
		速度③	積分定数を初期条件から求められる	Α
		位置①	速度の積分から位置が計算できる	Α
		位置②	積分定数を初期条件から求められる	Α
力と運動	運動の法則	第1法則	慣性の法則について説明できる	Α
		第2法則①	運動方程式について説明できる	Α
		第2法則②	質量の意味について説明できる	В
		第2法則③	加速度が計算できる	Α
		第3法則	作用反作用の法則について説明できる	Α
	様々な力	重力①	重力加速度について説明できる	Α
		重力②	重力場での放物体運動が計算できる	В
		万有引力①	万有引力について説明できる	Α
		万有引力②	万有引力と重力の関係を説明できる	В
		慣性力①	直線運動時の慣性力が計算できる	Α
		慣性力②	円運動時の遠心力が計算できる	В
エネルギー	エネルギー	仕事	仕事量が計算できる	Α
		仕事率	仕事率が計算できる	Α
		仕事とエネルギー	仕事とエネルギーの関係を説明できる	В
		運動エネルギー	運動エネルギーが計算できる	Α
		位置エネルギー①	重力の位置エネルギーが計算できる	Α
		位置エネルギー②	バネの位置エネルギーが計算できる	В
		位置エネルギー③	万有引力の位置エネルギーが計算できる	В
		エネルギー保存則	力学的エネルギー保存則の説明ができる	Α
		力と位置エネルギ	保存力と位置エネルギーの関係について説明	С
		_	できる	

物理学基礎Ⅱの基礎・基本

1. 項目数

	分 類	Α	В	С	細目数計
3年生(1単位)	質点系力学	4	1	1	6
	剛体の力学	8	3	2	1 3
	弾性体	2	1	1	4
	流体力学	5	1	2	8
項目数計		1 9	6	6	3 1

2. 分類とそれらの内容

2. 分類とそ	れらの内谷		1	
分類	項目	細目	理解すべき内容	区分
質点系力学	質点系の力学	重心の位置	質点系の重心の位置が計算できる	Α
		重心の速度	質点系の重心の速度が計算できる	Α
		重心の運動方程式	重心の運動方程式について説明ができる	В
		運動量保存則	運動量保存則を用いる計算ができる	Α
		角運動量保存則	角運動量保存則を用いる計算ができる	Α
		全エネルギー	全エネルギーと重心運動のエネルギー、内部	С
			エネルギーの関係を説明できる	
剛体の力学	剛体の力学	力のモーメント	カのモーメントが計算できる	Α
		角速度	角速度が計算できる	Α
		回転運動の方程式①	回転運動の方程式が導ける	С
		回転運動の方程式②	回転運動の方程式について説明できる	Α
		回転のエネルギー	回転運動のエネルギーが計算できる	Α
		慣性モーメント①	一様な棒の慣性モーメントが計算できる	Α
		慣性モーメント②	一様な円盤の慣性モーメントが計算できる	A
		慣性モーメント③	平行軸の定理について説明ができる	В
		慣性モーメント④	平面剛体の定理について説明ができる	В
		慣性モーメント⑤	一様な球の慣性モーメントが計算できる	С
	自由な運動	運動方程式の連立	回転しつつ重心が移動する運動に関し、所要	Α
			な方程式の説明をすることができる	
		典型的例題①	ヨーヨーの運動について所要事項を計算す	Α
			ることができる	
		典型的例題②	摩擦のある平面上を転がる糸車の運動につ	В
			いて所要事項を計算することができる	
弾性体	弾性体	応力	応力について説明ができる	С
		ヤング率	ヤング率について説明ができる	Α
		伸びや縮み	伸びや縮みが計算できる	Α
		弾性エネルギー	弾性エネルギーが計算できる	В
流体力学	流体	圧力	流体中の圧力の特徴を説明できる	Α
		流線と流管	流線と流管について説明できる	В
		連続の式	連続の式を用いる計算ができる	Α
		ベルヌーイの式①	ベルヌーイの式が導ける	С
		ベルヌーイの式②	ベルヌーイの式について説明ができる	Α
		静水圧	静水圧が計算できる	Α
		動圧	動圧が計算できる	Α
		ピト一管	ピトー管の原理について説明ができる	С

電気回路Ⅲ の基礎・基本

1. 細目数

	分 類	Α	В	С	細目数計
3年生(2単位)	交流理論	2 3	6	0	2 9
	回路網理論	2	2	0	4
細	2 5	8	0	3 3	

2. 分類とそれらの内容

分 類	項目	細 目	理解すべき内容	区分
交流理論	電磁誘導結	相互誘導	相互誘導の原理を理解し、相互インダクタ	
	合回路		ンスMを導くことができる。	A
		相互誘導回路	相互誘導回路の回路方程式を導くことがで	4
		の回路方程式	きる。	A
		相互誘導回路	コイルの和動接続・差動接続における回路	A
		の接続方式	方程式を導くことができる。	A
		相互誘導回路	相互誘導回路の等価回路を用いることがで	D
		の等価回路	きる。	В
		相互誘導回路	電磁結合回路の一次側・二次側における加	
		の計算	極性接続、減極性接続および二次側開放・	A
			短絡回路の回路計算が行える。	
	変圧器結合	鉄心の役割と	変圧器鉄心の役割を理解し、巻数比aが導出	A
	回路	巻数比	できる。	А
		変圧器結合回	二次側に負荷が接続された変圧器結合回路	
		路の回路方程	の回路方程式を、巻数比aを用いて表現でき	A
		式	る。	
		理想変圧器	理想変圧器の意味を理解し、その等価回路	A
			を描くことができる。	Α
		変圧器結合回	理想変圧器の二次側に負荷を接続した場合	A
		路の計算	の種々の回路計算を行える。	71
	三相交流回	多相交流の概	多相交流の概念、特に三相交流については	A
	路	念	その利点を理解できる。	Λ
		三相交流の表	三相交流の各電圧・電流のベクトル表記法	A
		記法	について理解できる。	11
		三相交流の接	三相交流のY結線・ Δ 結線を学び、それぞ	
		続法	れの相電圧・線間電圧、線電流・環状電流	A
			について理解できる。	

分 類	項目	細目	理解すべき内容	区分
交流理論			三相Y結線回路における電圧・電流のベクトル表記について理解できる。	A
		Δ 結線の電圧・電流の関係	三相 Δ 結線回路における電圧・電流のベクトル表記について理解できる。	A
		回転磁界	三相交流による回転磁界の発生原理を理解できる。	В
	対称三相交 流回路	Y-Y回路Δ-Δ回路	電源・負荷ともに同じ結線の場合の各電圧・電流の関係を理解できる。	A
		Y - Δ 回路Δ - Y 回路	電源・負荷の結線が異なる場合の各電圧・ 電流の関係を理解できる。	A
		Y→Δ変換 Δ→Y変換	電源および負荷における結線の相互変換 $(Y \rightarrow \Delta $ 変換・ $\Delta \rightarrow Y$ 変換)が行える。	В
	三相交流電力	対称三相回路 の電力	対称三相回路の有効・無効・皮相電力について理解できる。	A
		三相回路の電 力測定	二電力計法による三相回路の電力測定について理解できる。	A
	V結線	V 結線と三相 交流電圧	単相変圧器を2台利用したV結線により、 三相出力を得られることを理解できる。	A
		V-∆回路	V結線電源とΔ結線負荷の接続回路における電圧・電流のベクトル表記について理解できる。	A
		V結線電源の 出力	V結線電源の出力特性について理解できる。	В
		V 結線変圧器 の利用率	V結線変圧器の利用率について理解できる。	В
	対称座標法	非対称三相回 路	非対称なY-Y回路においては、ミルマン の定理により各線電流を求めることができ る。	A
			ベクトルオペレータa=(-1/2+j√3/2)について理解できる。	A
		対称成分への 分解	非対称な三相電圧・電流を各成分(正相・ 逆相・零相)に分解できる。	A
		三相交流発電 機の基本式	内部インピーダンスを有する三相交流発電 機の基本式を導くことができる。	A
				A

分類	項目	細目	理解すべき内容	区分
交流理論		送電系統にお	送電系統における、1線地絡・2線地絡・	
		ける故障計算	2線短絡・3線短絡時の各線電流を求める	В
			ことができる。	
回路網理論	二端子対回	二端子対回路	二端子対回路の各種表記法(Yパラメー	
	路	の基礎公式	タ・Zパラメータ・Fパラメータ)を理解	A
			できる。	
		二端子対回路	それぞれの表記法で示された二端子対回路	
		の相互変換	を相互の表記法に変換できる。	В
		二端子対回路	二端子対回路の直列接続・並列接続・縦続	
		の接続	接続を理解し、各種計算に利用できる。	A
		その他の表記	Hパラメータについて理解し、トランジス	
		法	タの簡易等価回路を描くことができる。	В

電気回路IV の基礎・基本

1. 細目数

	分 類	Α	В	С	細目数計
3年生(1単位)	過渡現象の基礎	1 4	6	2	2 2
細	目 数 計	1 4	6	2	2 2

2. 分類とそれらの内容

公 粨	項目	細目	理解すべき内容	区分
分類	* ' ' '		理解すべき内容	- 公ガ
過渡現象の基		一階線形微分	過渡現象の初等解析に必要な簡単な一階線形	A
礎	簡単な回路	方程式の解	微分方程式の一般解を求めること。	
		RC 直列回路	RC 直列回路における充電・放電電流の式を求	A
		(1)	めること。	
		RC 直列回路	RC 充電・放電回路における各素子の電圧およ	В
		(2)	びエネルギーの式を求めること。	D
		RL 直列回路	RL 直列回路における充電・放電電流の式を求	
		(1)	めること。	A
		RL 直列回路	RL 充電・放電回路における各素子の電圧およ	_
		(2)	びエネルギーの式を求めること。	В
		時定数	過渡現象における時定数の意味を理解するこ	
			と。	A
	交流電源と	RC 直列回路	RC 直列回路に交流電圧を印加した場合の電	
	簡単な回路	,	流の式を求めること。	A
		RL 直列回路	RL 直列回路に交流電圧を印加した場合の電	A
			流の式を求めること。	
	パルス電源	RC 直列回路	RC 直列接続による微分回路・積分回路につい	A
	と簡単な回		て理解すること。	71
	路	RL 直列回路	RL 直列接続による微分回路・積分回路につい	A
			て理解すること。	А
	直流電源と	二階線形微分	過渡現象の初等解析に必要な簡単な二階線形	
	複エネルギ	方程式の解	微分方程式の一般解を求めること。	A
	一回路	LC 直列回路	LC 直列回路に直流電圧を印加した場合の電	
		(1)	流の式を求めること。	A
		LC 直列回路	LC 直列回路に直流電圧を印加した場合の各	
		(2)	素子の電圧およびエネルギーの式を求めるこ	В
			と。	ב
			0	

分類	項目	細目	理解すべき内容	区分
過渡現象の基		LC 自由振動回	LC 自由振動回路における電流の式および各	
礎		路	素子の電圧の式を求めること。	A
		LCR 直列回路	LCR 直列回路に直流電圧を印加した場合の電	A
		(1)	流の式を求めること。	A
		LCR 直列回路	LCR 直列回路に直流電圧を印加した場合の各	
		(2)	素子の電圧およびエネルギーの式を求めるこ	В
			と。	
		LCR 自由振動	LCR 自由振動回路における電流の式および各	A
		回路	素子の電圧の式を求めること。	А
	交流電源と	LC 直列回路	LC 直列回路に交流電圧を印加した場合の電	C
	複エネルギ		流の式を求めること。	C
	一回路	LCR 直列回路	LCR 直列回路に交流電圧を印加した場合の電	\mathbf{C}
			流の式を求めること。	C
	複合回路	LCR 直並列回	直流電源に接続された簡単なLCR直並列回路	
		路	における、各枝路に流れる電流の式を求める	A
			こと。	
		三相回路	三相回路における、各相に流れる電流の式を	В
			求めること。	ъ
		相互誘導回路	相互誘導回路における、一次側・二次側に流	В
			れる電流の式を求めること。	Б

電気計測 III の基**礎・基本**

1. 細目数

	分 類	Α	В	С	細目数計
3年生(1単位)	測定法	8	5	4	17
	波形の観測記録	2	2	2	6
細	10	7	6	23	

2. 分類とそれらの内容

				1/3
分 類	項目	細目	理解すべき内容	区分
測定法		単相無効電力	単相無効電力の測定方法について理解す	A
	無効電力の		る。	
	測定	三相無効電力	三相無効電力の測定方法について理解す	С
			る。	
	電流力計以	乗算器利用電	乗算器利用電力計の動作原理を理解する。	В
	外の電力計	力計		
		デジタル電力	デジタル電力計などその他の電力計の動作	С
		計	原理を理解する。	
	力率(位相)	単相力率計	力率の意味、及び測定法について理解する。	А
	の測定			
		電子式位相計	電子式位相系の動作原理を理解する	В
	 電力量の測		単相電力計の動作原理を理解する。	Λ
	電力重の側 定	字相电力 	中们电刀司の動下が座を座牌する。 	Α
	足	三相電力計	三相電力計の動作原理を理解する。	С
	抵抗	中位抵抗の測	電位降下法。オームの法則を直接応用。	В
		定①		
		中位抵抗の測	ホイートストンブリッジ法。	Α
		定②	平衡条件PR=QX。	
		中位抵抗の測	回路計による測定方法を理解する	В
		定③		
		低抵抗の測定	電圧降下法およびケルビンのダブルブリッ	A
			ジ法。電流端子と電圧端子を別にもうける。	
		高抵抗の測定	絶縁抵抗測定、絶縁抵抗計の測定方法につい	A
			て理解する。	
		特殊抵抗測定	接地抵抗, 電解液抵抗, 半導体抵抗の測定方	С
			法を理解する。	
	インピーダ	交流ブリッジ	ブリッジの平衡条件から測定対象の値を求	A
	ンス	法	める方法を理解する。	
		ディジタルLCR	ディジタルLCRメータ, Qメータの動作原理を	В
		メータ, Qメー	理解する。	
		タ		
	磁束、磁界	磁束、磁界の測	磁針、サーチコイル、ホール素子による測定	A
	の測定	定	方法を理解する	
	=			
L	ı	I.	1	

	オシロ/シ	構造と動作原	オシロ/シンクロスコープの構造と動作原理、	Α
	ンクロスコ	理、構成	および構成について理解する。	
波形の観測、記	ープ	蛍光面	蛍光体(蛍光物質) の種類を理解する。	С
録				
		リサージュ図	応用例。リサージュ図形により、周波数、	Α
		形	位相差を測定可能とする。	
	ディジタル	構成,機能	ディジタルメモリスコープの構成、機能につ	В
	メモリスコ		いて理解する。	
	ープ			
	ロジックア	構成,機能	ロジックアナライザーの構成、機能について	С
	ナライザー		理解する。	
	記録装置	種類, 構成,	記録装置の種類、構成及びそれぞれの特徴	В
		特徴	について理解する。	

電子工学 の基礎・基本

1. 細目数

	分 類	Α	В	С	細目数計
3年生(1単位)	電子放出	4	1 0	1	1 5
	電子運動	3	8	2	1 3
	マイクロ波管	0	5	2	7
	気体中の放電	4	3	2	9
細目数計		1 1	2 6	7	4 4

2. 分類とそれらの内容

区分 Sれ B
I
iめ A
E必 A
)。
可の A
)。
で B
)。
ごあ C
電 B
D B
ヹ が B
fを B
/ギ B
E長 B

A) 355	-T	./.m. ₩	-m/m)	A
分類	項 目	細目	理解すべき内容	区分
電子放出			金属表面に照射する高速電子と、金属から放	A
(つづき)	出	次電子	出される電子であることを理解する。	
		放出比	照射する一次電子数n ₁ と放出される二次電子	В
			数n₂の比であることを理解する。	
		二次電子増倍	二次電子放出の現象を利用して、高感度の光	В
		管	検出ができる装置であることを理解する。	
電子運動	電界中の電	クーロン力	電界によって電子は電界と逆向きの力を受け	A
	子運動		ることを理解する。(F=-eE [N])	
		運動方程式	電子に働くクーロン力と、運動の第2法則が	В
			釣り合うことを理解する。	
		電界中の運動	電子が電界中を運動する場合、電子走行時間	В
			やエネルギーが計算できること	
	静電偏向	偏向量	電子の偏向量が偏向電圧Vに比例し、加速電圧	В
			V ₀ に反比例することを数値計算できる。	
		偏向感度	電子の偏向量と偏向電圧の比が、加速電圧V。	С
			に反比例することを理解する。	
	磁界中の電	ローレンツ力	磁界中を運動する荷電粒子に働く力であるこ	A
	子運動		とを理解する。	
		運動方程式	電子に働くローレンツ力と、運動の第2法則	В
			が釣り合うことを理解する。	
		円運動の半径	磁界中を運動する電子の円運動の半径が計算	В
			できる。	
		ら旋運動	磁界中を運動する電子は、円運動と直線運動	В
			を合成したら旋運動をすることを理解する。	
	 電磁偏向		電子の偏向量が磁束密度Bに比例し、加速電圧	В
	HE NAW NUTLI	Nim I. A =E	V。の平方根に反比例することを計算できる。	D
		偏向感度	電子の偏向量と磁束密度の比が加速電圧V。の	С
		Min 1. 1967/X	平方根に反比例することを計算できる。	
	電磁界中の	運動方程式	クーロン力とローレンツ力の合成力が、運動	В
	電子運動		の第2法則と釣り合うことを理解する。	ט
	中 1 (全到)	サイクロイド		A
		運動	の1点の軌跡で表されることを計算できる。	Λ
コノカロ計位	乗用 1. 乗っ			D
マイクロ波管		エネルギー変	電子が減速電界中で運動すると、運動エネル	В
	のエネルギ		ギーが電界に与えられることを理解する。	
	一変換	誘導電流	空胴共振器に流れる誘導電流によって、エネ	В
			ルギー変換ができることを理解する。	

分類	項目	細目	理解すべき内容	区分
マイクロ波管	クライスト	直進型クライ	入力空胴と出力空胴で構成され、増幅器、周	В
(つづき)	ロン	ストロン	波数逓倍器として働くことを理解する。	
		反射型クライ	1つの共振器で入出力を行わせる構造で、増	В
		ストロン	幅に用いられることを理解する。	
	進行波管	遅波回路	高周波電界の速度を電子速度と同程度に遅	С
			らせるための回路であることを理解する。	
		電子流の集群	遅波回路を用いると、高周波電界の影響で電	С
			子密度に粗密ができることを理解する。	
	マグネトロ	高出力マイク	電子の運動エネルギーと位置エネルギーを利	В
	ン	口波管	用した高出力管であることを理解する。	
気体中の放電	低圧気体中	気体分子運動	不規則な運動の集合体である気体分子は、全	Α
	の荷電粒子	論	体としてある法則があることを理解する。	
		速度分布則	全分子の速さがどのように分布しているかを	В
			統計的に示す式であることを理解する。	
		平均自由行程	気体分子や電子が、衝突から次の衝突までの	В
			間に進む距離を計算できる。	
	帯電粒子の	基底状態	原子のエネルギーが最小限になるように配列	Α
	生成		された状態であることを理解する。	
		励起状態	外部エネルギーを受けて、原子がより高いエ	Α
			ネルギー状態になることを理解する。	
		電離	非常に大きなエネルギーを加えると、原子は	Α
			正イオンと電子に分離することを理解する。	
		累積電離	原子が段階的にエネルギーをもらって、電離	В
			状態まで進む現象であることを理解する。	
		付着	分子に電子が吸着されると分子は負イオンに	С
			なることを理解する。	
		再結合	正イオンと負イオンが出合うと中和して中性	С
			の分子に戻ることを理解する。	

論理回路 の基礎・基本

1. 細目数

	分 類	Α	В	С	細目数計
3年生(1単位)	デジタル (復習)	5	1		6
	論理演算	5			5
	論理ゲート素子	8			8
	組み合わせ論理回路	1 5	1	3	1 9
	ゲートIC	6	5	1	1 2
細 目 数 計		3 9	7	4	5 0

2. 分類とそれらの内容

分類	項目	細目	理解すべき内容	区分
デジタル(復	基本的事項	デジタルデー	デジタルデータは量子化された離散データであり, データ量	A
習)		タ	が小さくノイズに強い反面,一部の情報が欠落していること.	
			一方アナログデータは連続データであり、データ量が大きくノ	
			イズに弱いものの,全情報を含んでいること.	
		2値化と閾値	デジタルデータの代表例は、電圧の高/低(H/L)等で2つの状	А
			態に区別する2値化データであること. また, H/Lを区別するた	
			めに用いられる基準値を,閾値と呼ぶこと.	
		2進数	2値化データは2進数(1/0)として取り扱えること. また, 最小単	Α
			位が 1 [bit], 8 [bit] =1 [byte] であること.	
		記数法	数値を,2進数や10進数,8進数,16進数などの表記法で表	Α
			現できること. また, 各表記法間で相互変換ができること.	
		補数	負数を表現するために補数が用いられ、2進数では1の補数	Α
			と2の補数があること. また, 各補数を導出できること.	
		四則演算	各表記法による数値について, 四則演算できること	В
論理演算	基本的事項	論理変数	電圧のようにH/Lの2状態を持つものを論理変数と呼び、ある	Α
			状態を真(Tまたは1), 別の状態を偽(Fまたは0)とすること. ま	
			た, 偽(T)の状態は, 論理変数に上線を付けて表記すること.	
		正論理と負論	電圧のH/L等の2状態を2進数で取り扱う場合, Hを1, Lを0に	Α
		理	対応させる場合を正論理と呼ぶこと. 一方, Hを0, Lを1とする	
			場合を負論理と呼ぶこと.	
	ブール代数	基本演算要	論理変数による論理的思考を表現するための数学的な記述	Α
		素(AND,OR,	をブール代数と呼び, 論理積(AND), 論理和(OR), 論理否定	
		NOT)	(NOT)の3つの演算要素で構築されていること. また, 各演算	
			要素を数式(論理式), 真理値表, ベン図で表現できること.	
		公理と諸法則	公理および諸法則(恒等則,同一則,補元則,復元則,交換	Α
			則,結合則,分配則,吸収則)を用いて,論理式を変形およ	
			び簡単化できること.	
	ド・モルガン		2変数の論理積否定(NAND)は各変数の否定同士の論理和	А
	の定理	変換とNOR	(OR)となり、論理和否定(NOR)は各変数の否定同士の論理	
		⇔AND変換	積(AND)となること. また, これを用いて論理式の変形および	
			簡単化ができること.	

分類	項目	細目	理解すべき内容	区分
	基本ゲート素		多変数入力1変数出力素子で,入力の論理積(AND)を出力	A
子	子	AND示 1	すること。2入力1出力AND素子を、論理式、MIL記号、真理	11
,	1		値表, ベン図で表現できること. また, AND, OR, NOTの組	
			み合わせで、全ての論理回路を構成できること.	
		OR素子	多入力1出力素子で,入力の論理和(OR)を出力すること。2	A
		OK ₅ , 1	入力1出力AND素子を,論理式,MIL記号,真理値表,ベン	71
			図で表現できること、また、AND、OR、NOTの組み合わせ	
			で、全ての論理回路を構成できること。	
		NOT素子	1入力1出力の素子で,入力の否定(NOT)を出力すること.論	A
		NOIA 1	理式、MIL記号、真理値表、ベン図で表現できること。また、	11
			AND, OR, NOTの組み合わせで,全ての論理回路を構成で	
			きること	
	ゲート素子	NAND素子	多入力1出力素子で,入力の論理積否定(NAND)を出力する	A
	/ 「汞」	IVAI DA 1	こと、2入力1出力NAND素子を、論理式、MIL記号、真理値	
			表, ベン図で表現できること. また, NANDのみの組み合わせ	
			で、全ての論理回路を構成できること	
		NOR素子	多入力1出力素子で、入力の論理和否定(NOR)を出力するこ	A
		NOKW 1	と. 2入力1出力NOR素子を, 論理式, MIL記号, 真理値表,	71
			ベン図で表現できること。また、NORのみの組み合わせで、全	
			ての論理回路を構成できること。	
		Buffer素子	1入力1出力の素子で、入力をそのまま出力(スルー)するこ	A
		Duller 7	と. 論理式、MIL記号、真理値表、ベン図で表現できること.	71
			また、論理信号の中継や分岐・合流等に用いられること	
		Ex-OR素子	多入力1出力素子で、入力の排他的論理和(Ex-OR)を出力す	Α
		LX OICE	ること。2入力1出力Ex-OR素子を, 論理式, MIL記号, 真理	11
			値表、ベン図で表現できること。	
		Ex-NOR素子		A
		LX TORX 1	すること。2入力1出力Ex-NOR素子を, 論理式, MIL記号,	11
			真理値表,ベン図で表現できること.	
組み合わせ	基本的事項	論理式と論理	真理値表や論理式から論理回路を描けること. また, 論理回	A
論理回路	1111111	回路	路から最終出力や中間出力の論理式を導出できること。	
		設計手順	基本的な設計手順は、命題に従う入出力の決定⇒真理値表	Α
			の作成⇒論理の簡単化⇒論理式の導出⇒回路図への変換と	
			なること	
	論理の簡単	 目的	* 論理の簡単化の主目的には,素子数を少なくすることと,素子	Α
	化		の種類を少なくすることの2種類であること.	
		カットアンドト	ブール代数の公理や諸法則およびド・モルガンの定理によっ	Α
		ライ法	て素子数を少なくする手法であること。また、この方法で回路	
			設計できること.	
		カルノー図法	カルノー図と呼ばれる入出力関係図を用いて素子数を少なく	A
			する手法であること. カルノー図のマス目や行および列には論	
			理的な意味があること.また,この方法で回路設計できること.	
		クワイン・マク		С
		ラスキー法	た,この方法で回路設計できること.	
				l

分類	項目	細目	理解すべき内容	区分
				A
a み 石 わ セ 論理回路(続)		形	電理の最小項を等面して調理和をとることにより、系子の種類 を3種類(AND, OR, NOT)に減らす手法であること。また、こ	A
冊生凹岭(77亿)	7 L (11916)	カシ	で3種類(AND, OK, NOT)に傾らり子伝であること。また、この方法で回路設計できること。	
		(主)乗法標準		Λ
		形 (土)来伝標準	神理の取入頃を導面して神理慎をとることにより、素子の種類を3種類(AND, OR, NOT)だけで設計する手法であること。ま	Α
		<i>115</i>	た、この方法で回路設計できること.	
		NAND排件		Λ.
		NAND構成	ブール代数およびド・モルガンの定理に基づき、基本ゲート素	A
			子(AND, OR, NOT)をNANDだけで表現できること。また、こ	
		NOD推出	の方法で回路設計できること.	Δ.
		NOR構成	ブール代数およびド・モルガンの定理に基づき、基本ゲート素	A
			子(AND, OR, NOT)をNORだけで表現できること。また、この	
	安田同助	お 同切 1. ア	方法で回路設計できること.	Δ.
	実用回路		既習のEx-NORが一致回路, Ex-ORが不一致回路であり,	A
		一致回路	各々良く用いられていること。	
		エンコーダ	元データをある規則に従って符号化する回路であること.ま	Α
			た,0~9までの10進数を4 [bit] の2進数に変換するエンコー	
			ダについて、回路設計できること。	
		デコーダ	符号化データを元データへ複合する回路であること. 4 [bit]	Α
			の2進数を0~9までの10進数に対応する出力へ変換するデコ	
			ーダについて,回路設計できること.また,入力禁止φが存在	
		_ , , , , , , , , , , , , , , , , , , ,	し、その取り扱いには注意が必要であること	
			4 [bit] の2進数を0~9までの10進数として視覚的に表示する	Α
		示器	7セグメント表示器があること. また, それを表示させるための	
		. I. I fata man	回路設計ができること.	
		半加算器	1 [bit] の2進数同士の加算を行う回路であり、下位桁からの	Α
			桁入りを考慮しないものであること. また, 半加算器を設計で	
			きること.	
			1 [bit] の2進数同士の加算を行う回路であり、下位桁からの	Α
		加算器	桁入りを考慮したものであること. 1 [bit] の半加算器2個とOR	
			1個で構成されること.また,これを設計できること.	
		加算回路	1 [bit] の全加算器をn個組み合わせて構成されること. また,	В
			これを設計できること。	
		減算回路	加算回路と補数回路の組み合わせで構成されること. また, こ	С
			れを設計できること。	
			複数の信号を1つに合成・多重化する回路をマルチプレク	С
			サ,1つの信号を複数に分割して出力選択する回路を出マル	
		プレクサ	チプレクサと呼ぶこと. また, これらを設計できること.	
ゲートIC	TTL	構成と特徴	複数のトランジスタで構成されたゲートICを, TTL(Transistor	А
			Transistor Logic)と呼ぶこと. また, 速度が速いものの, 消費	
			電力大で入力インピーダンスが数 [kΩ] と低いこと 等の特徴	
			が挙げられること.	
		基本回路と動	複数のトランジスタで構成される基本回路から、入力に応じた	В
		作	各トランジスタのOn/Off状態や出力動作を考察できること.	

八 粧	百 口	√ m □	理級よいも内容	4 / 4
分類	項目	細目	理解すべき内容	区分
ゲートIC(続)	CMOS	構成と特徴	2種類のMOS-FET(p-MOS, n-MOS)の組み合わせをCMOS	Α
			(Complementary MOS)呼び、複数のCMOSの組み合わせで	
			他のゲートICが作られること. また, 速度が遅い反面, 消費電	
			力小で入力インピーダンスが極めて大きい(数 [MΩ])こと 等	
			の特徴が挙げられること.	
		基本回路と動	CMOSの基本動作はインバーター動作であること. また, 複数	В
		作	のCMOSを組み合わせた場合,入力に応じた各MOS-FETの	
			On/Off状態と出力動作を考察できること.	
	インターフェ	閾値電圧とノ	入出力電圧のH/Lを区別する閾値電圧で入出力電圧特性が	A
	ース	イズマージン	決まること. また,ノイズによる誤動作を防ぐため,H/Lにはノイ	
			ズマージンと呼ばれる電圧範囲が各々設定されていること.	
		プルアップ抵	ゲートICへ確実に信号(H/L)を入力するために、プルアップ抵	A
		抗とプルダウ	抗やプルダウン抵抗が用いられること.また,プルアップ抵抗	
		ン抵抗	は伝送距離が長い場合にも用いられること.	
		N, LS, HC	TTLにはNタイプやLSタイプ等があり、H/Lの閾値電圧が異な	В
			 ること. 両者の接続にはプルアップ抵抗が必要となること. ま	
			た, CMOSにはHCタイプ等があり, Nタイプと接続の互換性が	
			保たれていること	
		トーテムポー	ゲートICの出力端には、トーテムポール形とオープンコレクタ	В
			形の2種類があること.前者はH/Lの出力が安定しているもの	2
		ンコレクタ形	の, 定格に注意して取り扱う必要があること. 一方, 後者はH	
			出力が不安定となるため、プルアップ抵抗が必要となること.	
			ゲートIC同士を接続した場合,前段がH出力時には前段から	A
			吐き出し電流が生じ、次段への吸い込み電流となること. 一	. I. I.
		流	方,前段がL出力時には次段から吐き出し電流が生じ,前段	
		ויעו	への吸い込み電流となること。また、両電流とも定格があり、定	
			格を超えると素子の動作が不安定となること。	
		ファンアウト	ゲートIC同士の接続時において、前段・次段の吐き出し電	A
		ファイナソド		А
			流・吸い込み電流の比をファンアウトと呼び、接続できる素子	
		土は□ਘ→	数が決まること。	Т.
		未使用端子		В
	· ·	の処理	安定になるため、電源またはGNDと接続する必要があること	
	取扱上の注	規格表	規格表から、実際のゲートICの種類やピン配置、取扱上の注	С
	意点		意点等を読み取れること.	

情報処理Ⅲ_ の基礎・基本

1. 細目数

	分 類	Α	В	С	細目数計
3学年	C言語(復習)	14	0	0	14
(1 単位)	C言語(関数)	2	1	0	3
(1年位)	C言語(配列とポインタ)	5	2	0	7
ń	21	3	0	24	

2. 分類とそれらの内容

分	類	項目	細目	理解すべき内容	区分
C言語	(復習)	データ型と四	データ型	文字型と整数型, 浮動小数点数型の違い	A
		則演算		を理解する.	
				変数の型として, char, shrt, int, long,	
				float, double, long doubleがあること, お	
				よび各変数の型が使用するバイト数.	
			定数	const および記号定数の宣言の仕方.	A
			演算子	加減乗除 (+, -, *, /) と剰余(%)の演	A
				算子を使用して、計算ができる.	
				インクリメント演算子、デクリメント演	
				算子の動作.	
			型変換	型変換(キャスト)の書式、使用方法、	A
		標準入出力	printf	printf の書式,書式指定文字列	A
				(%c,%d,%x,%f) の使い分け.	
			scanf	scanf の書式,書式指定文字列	A
				(%c, %d, %f, %lf)の使い分け.	
		条件分岐	条件式	条件式の真偽,関係演算子.	A
			if文	if 文の書式と動作.	A
			switch 文	switch 文の書式と動作.	A
		繰り返し	for 文	規定回数の繰り返しに使用すること、お	A
				よび for 文の書式と動作.	
			while 文	while 文の書式と動作.	A
			do~while 文	do~while 文の書式と動作.	A
			二重ループ	二重ループの構造、動作.	A
		配列	宣言と個数	変数名[要素数・1][要素数・2]…の形式で	A
				宣言されること、および配列変数の個数	
				と使用方法.	

分 類	項目	細目	理解すべき内容	区分
C言語(関数)	ユーザー定義	ユーザー定義関数の	ユーザー定義関数の書式, 関数の呼び出	A
	関数	書式と動作	し方と動作.	
		ローカル変数とグロ	グローバル変数とローカル変数の影響が	A
		一バル変数	及ぶ範囲が違うこと.	
		auto変数とstatic変数	auto 変数と static 変数の宣言の仕方,	В
			auto 変数と static 変数の動作の違い.	
C言語(配列と	ポインタ	アドレス	アドレスとはメモリ上番地の番地である	A
ポインタ)			こと、および、変数の型により、メモリ	
			の使用数が違うこと.	
		ポインタ変数	ポインタ変数の宣言の仕方、アドレス演	A
			算子,逆参照演算子の意味と使い方.	
		ポインタ引数	関数内で、引数の値を変えたいときに用	В
			いること.	
	配列とポイン	配列名とポインタ	配列名が配列の先頭アドレスであるこ	A
	タ		٤.	
		ポインタの演算	ポインタを一つすすめると、次の配列要	A
			素を示すこと.	
		配列名とポインタの	配列名とポインタが同じように使用でき	A
		違い	る点と、配列名とポインタの違う点.	
		配列引数	関数に配列データを全て渡すときの関数	В
			の書式と呼び出し方.	

__情報処理IV__ の基礎・基本

1. 細目数

	分 類	Α	В	С	細目数計
3学年	C言語(文字の取り扱い)	12	4	1	17
(1 単位)	C言語 (構造体と共用体)	4	6	0	10
A	田 目 数 計	16	10	1	27

2. 分類とそれらの内容

分 類	項目	細目	理解すべき内容	区分
	文字列と文字	文字列変数	文字列用の変数はなく、char型配列(文	A
取り扱い)	配列		字配列)を用いること.	
		文字配列	文字配列へ一文字ずつ代入していく方	Α
			法,strcpy 関数の使い方.	
			EOS が文字列の終わりを示すこと.	
		文字列の初期化	文字配列の初期化方法.	A
		文字配列の表示	printf 関数による文字配列の表示方法を	A
			理解する.	
		文字列へのポインタ	文字列とポインタの関係.	A
	ファイル入出	ファイルポインタ	ファイルの取り扱いでは,ファイルポイ	A
	カ		ンタが必要であること.	
		ファイルのオープン	fopen 関数の書式,オープンモード(r:	A
			読み込み、w:上書き、a:追加書き込み).	
		ファイルオープン時	ファイルが開けなかった場合, fopen 関数	В
		のエラーチェック	が 0 を返すこと.	
		ファイルからの読み	fgetc 関数,fputc 関数,fprintf 関数の	A
		込み、書き込み	書式と動作.	
		ファイルのクローズ	fclose 関数の書式を理解する.	A
	文字列の応用	文字から数値への変	atoi 関数,atol I 関数,atof 関数の書式	В
		換	 と動作.	
		文字列のコピー	strcpy 関数,strncpy 関数の書式と動作.	A
		文字列の連結	strcat 関数の書式と動作.	A
		文字列の検索	strchr 関数,strrchr 関数,strstr 関数	В
			の書式と動作.	
		文字列の比較	strcmp 関数の書式と動作.	С
		文字列の長さの取得	strlen 関数の書式と動作.	A
		単語単位への分解	strtok関数の書式と動作.	В
		十四十四 30777	SHOK例外の自れて到下.	D

分	類	項	目	細目	理解すべき内容	区分
C言語(構造体	構造体		構造体の概念	異なる型のデータをまとめて 1つのデー	A
と共用化	体)				タ型として扱うものであること.	
				構造体の宣言	構造体タグ,構造体メンバ,構造体変数.	A
				構造体メンバへのデ	メンバー演算子(.), 構造体の変数名.メ	A
				一タ代入と参照	ンバー名の形になること.	
				構造体配列	構造体配列の宣言.	A
				構造体へのポインタ	構造体ポインタの宣言とアロー演算子	В
					(->)を使った構造体メンバの参照.	
				構造体と関数	関数の引数に構造体を用いる方法と書	В
					式, およびその動作.	
					関数値として構造体を受け取る方法と	
					書式、およびその動作.	
				typedef	typedef の意味と typedef を使った構造	В
					体の宣言.	
		共用体		共用体の概念	同一のデータ領域を複数個の異なるデー	В
					タ型が共用するようにしたものであるこ	
					٤.	
				共用体の宣言	共用体タグ、共用体メンバ、共用体変数.	В
				共用体メンバへのデ	メンバー演算子(.)と共用体の変数名.メ	В
				一タの代入と参照	ンバー名の形になること.	

電気機器 [の基礎・基本

1. 項目数

	分類	Α	В	С	項目数計
3年生	電気機器の基礎	4	4	0	8
(1単位)	直流機の概要	9	2	0	11
	直流発電機	4	0	0	4
	直流電動機	5	1	2	8
	項目数計	22	7	2	31

2. 項目とそれらの内容

分類	項目	細目	理解すべき内容	区分
電気機器の	エネルギー	エネルギー変	エネルギー変換の形と電気機器との関係を	В
基礎	変換と電気	換	理解する. 例:機械エネルギーから電気エ	
	機器		ネルギーに変換する電気機器が発電機.	
		電気機器の分	種々の電気機器がどのような種類に分類さ	A
		類	れるかを理解する.	
	発電機作用	発電機作用	フレミング右手の法則を使って発電機作用	А
	と電動機作		を説明できる.	
	用	電動機作用	フレミング左手の法則を使って電動機作用	Α
			を説明できる.	
	電気機器用	材料の種類	電気機器の主な材料が導電材料、磁性材料、	Α
	材料		絶縁材料であることを理解する.	
		導電材料	銅が主であり、導線には丸線と平各線がる	В
			ことを理解する.	
		磁性材料	けい素鋼板が主に使われていること, 渦電	В
			流損とヒステリシス損が発生することを理	
			解する.	
		絶縁材料	絶縁材料としてどのような物質が使われる	В
			か,及びその耐熱特性の分類を理解する	
直流機の概要	直流機の	発電機の動作	発電機の動作原理を理解し、どのような電	A
	基本原理	原理	圧がコイルに誘起するか説明できる.	
		電動機の動作	電動機の動作原理を理解し、コイルが回転	А
		原理	する理由を説明できる.	

	1			2/0
分類	項目	細目	理解すべき内容	区分
直流機の概要	直流機の	基本構成	直流機の主な構成が電機子,界磁,整流子,	A
(続き)	構造		ブラシであることを理解し,これらの役割	
			を説明できる	
		電機子巻線法	電機子の巻線法(重ね巻、波巻)について	В
			理解し,その違いを説明できる.	
	直流機の	誘導起電力	電磁誘導作用から電機子巻線の誘導起電力	А
	基礎理論		の関係式を導き、具体的な値を求めること	
			ができる.	
		トルク	ローレンツ力により発生トルクの関係式を	A
			導き、具体的な値を求めることができる.	
		基本的な等価	直流発電機と電動機の記頬的な等価回路に	A
		回路とその関	ついて理解し、電機子電圧、電流などの関	
		係式	係式を導出できる.	
		電機子反作用	電機子反作用の現象、およびその及ぼす響	A
			と対策法を理解できる.	
		整流	ブラシと整流子の働きによる整流現象につ	В
			いて理解できる.	
		励磁方式	励磁方式(, 永久磁石, 他励, 自励など)に	A
			ついて理解し,方式の特徴を説明できる.	
		損失と効率	直流機の損失(鉄損、銅損、機械損、漂遊	A
			負荷損など),効率の定義を理解し,損失	
			と効率との関係を説明できる.	
直流発電機	直流発電機	直流発電機の	励磁方式による直流発電機の分類,及びそ	A
	の分類と等		の違いを理解できる.	
	価回路			Δ.
	/.	直流発電機の	各種発電機(他励、分巻、直巻など)の等	А
		等価回路	価回路を理解し、関係式を導出できる.	
			また、その関係式を使い、具体的な特性値	
		15 = 45 25 4+ 10.	を求めることができる.	Δ.
		代表的な特性	直流発電機の代表的な特性である無負荷特はいる。	А
	の特性	夕氏·沙声·W·~	性と外部特性を理解できる.	Α.
		各種発電機の		А
		特性	明できる.	

分 類	項目	細目	理解すべき内容	区分
直流電動機	直流電動機	直流電動機の	発電機同様、励磁方式による直流電動機の	Α
	の分類と等	分類	分類,及びその違いを理解できる.	
	価回路	直流電動機の	各種電動機(他励、分巻、直巻など)の等	A
		等価回路	価回路を理解し,関係式を導出できる.	
			また, その関係式を使い, 具体的な特性値	
			を求めることができる.	
	直流電動機	代表的な特性	直流電動機の代表的な特性である速度特	А
	の特性		性,トルク特性,速度トルク特性を理解で	
			きる.	
		各種電動機の	各種電動機の特性を理解し, その違いを説	A
		特性	明できる.	
	直流電動機	始動	直流電動機の始動時の問題点を理解し、各	В
	の運転		種始動方法について説明できる.	
		速度制御	速度制御の原理を理解し、界磁制御法、電	А
			圧制御法などの各種速度制御法の主な特徴	
			を説明できる.	
		制動	直流電動機の制動原理を理解し、各種制動	С
			法の主な特徴を説明できる.	
		逆転	直流電動機を逆転させる原理を理解し、各	С
		世野	, , , , , , , , , , , , , , , , , , , ,	C
			種方式の特徴を説明できる.	

電気機器Ⅱ___ の基礎・基本

1. 細目数

	分 類	Α	В	С	細目数計
3年生	変圧器	7	10	1	18
(1単位)	誘導電動機	7	5	1	13
細	目 数 計	14	15	2	31

2. 分類とそれらの内容

分類	項目	細目	理解すべき内容	区分
変圧器	変圧器の理論	起電力の公式	誘導起電力の公式(E =4.44 f N $m{\Phi}_m$)を表すこと	A
			ができる.	
		理想変圧器	抵抗、漏洩リアクタンスを取り除いた変圧器	A
			を理想変圧器ということを記述できる.	
		等価回路	変圧器から鉄心を取り除き、普通の電気回路	A
			で表した回路であることを記述できる.	
		ベクトル図	負荷電流を変化させ、変圧器のベクトル図を	A
			描くことが出来る.	
			変圧器の動作状態が分かる.	
	変圧器の特性	電圧変動率	電圧変動率の定義 $\{(\mathbf{V}_{20} - \mathbf{V}_{2n})/\mathbf{V}_{2n}\}$ を示すこ	A
		(定義)	とができる.	
		電圧変動率	計算式 $p\cos\theta + q\sin\theta$ を 示すことができる.	В
		(簡易計算式)		
		百分率抵抗降下	定義式 $p = I_2 R_{02} / V_2 \times 100$ (%) を示すことが	В
			できる.	
		百分率リアクタ	定義式 $p = I_2 R_{02} / V_2 \times 100$ (%) を示すことがで	В
		ンス降下	きる.	
		損失	鉄損(ヒステリシス損+渦電流損)と銅損があるこ	A
			とを説明できる.	
		効率	出力/入力,出力/(出力+損失)の式で表	A
			すことができる.	
	変圧器の構造	変圧器の分類	鉄心の組み合わせで内鉄型と外鉄型に分類さ	В
			れることが説明できる.	
		鉄心	珪素鋼板を薄くして成層したものであること	В
			を説明できる.	

分類	項目	細目	理解すべき内容	Z / Z 区分
変圧器	並列運転	並列運転とは	「2台以上の変圧器が並列で負荷に電力を供	
(つづき)	,,		給する」ということを説明できる.	
		並列運転の	「極性が一致する必要がある」ということが	В
		条件1	理解できる.	
		並列運転の	「巻数比と定格電圧が等しい」ということが	В
		条件2	理解できる.	
		並列運転の	「抵抗とリアクタンスの比が等しい」という	В
		条件3	ことが理解できる.	
		並列運転の	「百分率インピーダンス降下が等しい」とい	В
		条件4	うことが理解できる.	
	各種変圧器	種類	単相変圧器、三相変圧器、計器用変圧器があ	С
			ること、およびその特徴が説明できる.	
誘導電動機	誘導電動機の	誘導電流	フレミングの左手法則により誘導電流が発生	A
	原理		することが理解できる.	
		かご型回転子	かご型が巻線を持たないことを説明できる.	A
	回転磁界	発生の原理	3相交流による回転磁界発生の原理を説明で	A
			きる.	
	3相誘導電動機	変圧器との	3 相誘導電動機のベクトル図は変圧器のそれ	A
	の理論	類似点	と非常によく似ていることを説明できる.	
		滑り	定義式が記述できる.	A
		ベクトル図	3 相誘導電動機のベクトル図を描くことがで	A
			きる(非常に重要).	
	3相誘導電動機	速度特性	速度はなだらかに落ち直流分巻電動機に類似	В
	の特性		することが説明できる.	
		比例推移	滑りとトルクの関係を表す現象であることが説	В
			明できる.	
		ハイランド円線	誘導電動機の諸特性を表す電力円線図である	В
		図	ことを認識し、これを描くことができる.	
	3相誘導電動機	始動特性	かご型は始動トルクが小さく起動後、最大に	A
	の運転		達した後,急速に減少することが説明できる.	
		始動法	直接始動法、Y-Δ始動法、始動補償器法な	В
		** 库 <i>图 (</i>	どの各始動法の説明ができる.	D.
		速度制御法	滑り制御、周波数制御、極数制御、2次励磁	В
		1. 本ルギ	などの各速度制御法の説明ができる.	
		力率改善	2次側に抵抗を挿入すれば、電流は小さくな	С
			り、力率は改善され、トルクは大きくなることが理解できる	
			とが理解できる.	